Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Exp Biol Med (Maywood) ; : 15353702221128563, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2098257

ABSTRACT

In this study, we aimed to investigate the effect of paraoxonase 1 (PON1) rs662 polymorphism, arylesterase (ARE) activity, and the serum lipid profile in patients with coronavirus disease 2019 (COVID-19) in different stages of the disease considering post-COVID outcomes. A total of 470 COVID-19 patients (235 female and 235 male patients) were recruited into the study, and based on the World Health Organization (WHO) criteria, the patients were divided into three groups: moderate, severe, and critical. PON1 rs662 polymorphism was determined by the Alw 1 enzyme followed by agarose gel electrophoresis. Moreover, serum levels of triglycerides (TG), cholesterol (Chol), high-density lipoprotein-cholesterol (HDL-c), and low-density lipoprotein-cholesterol (LDL-c), as well as the level of the ARE activity of PON1 in the sera of patients were measured at the time of infection and one and three months after hospitalization. There was a significant relationship between the G allele and the severity of the disease. In addition, the probability of death in homozygous individuals (GG) was higher than in heterozygous patients (GA), and it was higher in heterozygous patients than in wild-type individuals (AA). There was also a significant relationship between the decrease in serum lipids and the intensity of COVID-19. On the contrary, at the onset of the disease, the HDL-c level and serum ARE activity were reduced compared to one and three months after COVID-19 infection. The findings of this study indicated the significant impact of PON1 rs662 polymorphism on ARE activity, lipid profiles, disease severity, and mortality in COVID-19 patients.

2.
Clin Lab ; 68(10)2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2080867

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to a pandemic in March 2020. During a viral infection, it has been reported that epigenetic changes occur for both sides: Infected cells elicit an antiviral environmental response, which induces and initiates certain pathways for proper response to the virus, while the virus silences the expression of vital genes in the anti-viral host cell. In this study, we aimed to examine the methylation level of the MX1 gene promoter in different stages in COVID-19 patients compared to the control group. METHODS: In total, 470 COVID-19 patients with a positive polymerase chain reaction (PCR) test (235 women and 235 men) were recruited into the study as the test group. Patients were divided based on the World Health Organization (WHO) classification into three groups: moderate, severe, and critical. Moreover, 100 healthy individuals (50 women and 50 men) were selected as the control group. Peripheral white blood cells were collected and PCR was performed using two types of primers designed for methylated and unmethylated states of the MX1 gene. The PCR products were then loaded on agarose gel and the band intensities were calculated by ImageJ software. RESULTS: The results showed a decrease in the methylation of the MX1 gene promoter in moderate and severe groups and an increase in the MX1 gene promoter methylation in the critical group. In addition, the level of methylation was higher in men than in women. CONCLUSIONS: Increased methylation of the MX1 gene in the critical group may indicate the role of SARS-CoV-2 in reducing the expression levels of this antiviral gene and thus promoting virus replication and disease progression.


Subject(s)
COVID-19 , DNA Methylation , Myxovirus Resistance Proteins , Female , Humans , Male , COVID-19/genetics , Myxovirus Resistance Proteins/genetics , SARS-CoV-2 , Promoter Regions, Genetic , Sex Factors
3.
International journal of environmental research ; 16(6), 2022.
Article in English | EuropePMC | ID: covidwho-2073133

ABSTRACT

This study aimed to investigate the presence/absence of SARS-CoV-2 genome in the air and high-touch surfaces. This cross-sectional study was conducted from late-2020 to mid-2021 in the sections of Intensive Care Unit (ICU), emergency, infectious disease ward, and nursing station of the COVID-19 patient reception center in Kerman, Iran. The presence/absence of SARS-CoV-2 genome in the 60 samples of high-touch surfaces and 23 air samples was analyzed by reverse transcription polymerase chain reaction (RT-PCR). Fisher’s exact test was used to compare the number of positive samples in different sampling sites. The genome of SARS-CoV-2 was found in the eight samples (13.32%) taken from the high-touch surfaces (two samples in COVID-19 ICU, two samples in general ICU, two samples in emergency ward, and two samples in nursing station) and two air samples (8.70%) (one sample in the general ICU and one sample in the emergency ward). Statistical analysis showed that there was no significant difference between the type of sampling site and the positive cases of SARS-CoV-2 in the surface samples (p value = 0.80) and air samples (p value = 0.22). According to the results, the SARS-CoV-2 can find in the high-touch surfaces and indoor air of the COVID-19 patient reception centers. Therefore, suitable safety and health measures should be taken, including regular and accurate disinfection of surfaces and equipment and proper ventilation to protect healthcare workers and prevent disease transmission. More studies are recommended to investigate the SARS-CoV-2 concentration in the high-touch surfaces and air samples in the similar researches, efficacy of different disinfectants used on the high-touch surfaces and compare the effect of type of ventilation (natural or mechanical) on the viral load. Article Highlights The presence/absence of SARS-CoV-2 genome investigated in the air and high-touch surfaces. Eight surfaces samples (13.32%) and two air samples (8.70%) were positive for genome. SARS-CoV-2 genome detected in the general ICU and emergency ward air samples. There was no significant difference between the sampling site and positive cases.

4.
Iran J Sci Technol Trans A Sci ; 46(5): 1309-1316, 2022.
Article in English | MEDLINE | ID: covidwho-1966212

ABSTRACT

In the pathophysiology of COVID-19, immunomodulatory factors play a vital role. Viruses have epigenetic effects on various genes, particularly methylation. Explaining the changes in immunological factor methylation levels during viral infections requires substantial consideration. HLA-C is a crucial determinant of immune function and NK cell activity and is primarily implicated in viral infections. This research focused on studying HLA-C methylation in COVID-19 patients with different severity. Peripheral blood samples were collected from 470 patients (235 men and 235 women) with RT-qPCR-confirmed COVID-19 test and classified into moderate, severe, and critical groups based on WHO criteria. Also, one hundred (50 men and 50 women) healthy subjects were selected as the control group. Peripheral blood mononuclear cells were used for DNA extraction, and the methylation-specific PCR (MSP) method and gel electrophoresis were used to determine the methylation status of the HLA-C. Significant statistical differences in HLA-C methylation were observed among cases and controls and various stages of the disease. HLA-C methylation in men and women has decreased in all stages (p < 0.05). In comparison with control, HLA-C methylation in both genders were as follows: moderate (women: 41.0%, men: 52.33%), severe (women: 43.42%, men: 64.86%), critical (women: 42.33%, men: 60.07%), and total patients (women: 45.52%, men: 56.97%). Furthermore, the methylation levels in men were higher than in women in all groups (p < 0.05). Significantly, among all groups, the severe group of men participants showed the highest methylation percentage (p < 0.05). No significant differences were detected for different disease severity in the women group (p > 0.1). This study found that HLA-C methylation was significantly lower in COVID-19 patients with different disease severity. There were also significant differences in HLA-C methylation between men and women patients with different severity. Therefore, during managing viral infections, particularly COVID-19, it is critical to consider patient gender and disease severity.

5.
Immunobiology ; 227(2): 152184, 2022 03.
Article in English | MEDLINE | ID: covidwho-1665011

ABSTRACT

INTRODUCTION: Hyper-inflammatory reactions play a crucial role in the pathogenesis of the severe forms of COVID-19. However, clarification of the molecular basis of the inflammatory-related factors needs more consideration. The aim was to evaluate the gene expression of two fundamental molecules contributing to the induction of inflammatory like CCR2 and DPP9 in cells from peripheral blood samples from patients with various patterns of COVID-19. METHODS: Peripheral blood samples were collected from 470 patients (235 male and 235 female) with RT-qPCR-confirmed COVID-19 test exhibiting moderate, severe, and critical symptoms based on WHO criteria. 100 healthy subjects (50 male and 50 female) were also enrolled in the study as a control group. The gene expression of DPP-9 and CCR-2 was assessed in the blood samples using real-time PCR method. RESULTS: The COVID-19 patients in severe stage expressed higher levels of CCR2 and DPP9 compared with healthy controls. In male and female patients, the levels of CCR2 and DDP9 expression significantly differed between moderate, severe, and critical patterns (p < 0.0001) as well as between each COVID-19 form and control group (p < 0.0001). The male patients with severe COVID-19 expressed greater levels of CCR2 and DPP-9 than female with same disease form. The female patients with moderate and critical COVID-19 expressed greater levels of CCR2 and DPP-9 than male patients with same disease stage. CONCLUSION: We demonstrated that the expression of DPP-9 and CCR-2 was substantially increased in COVID-19 patients with different forms of disease. Considerable differences were also demonstrated between male and female with different patterns of disease. Therefore, we suggest to consider the gender of patients and disease severity for management of COVID-19.


Subject(s)
COVID-19 , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Receptors, CCR2 , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Female , Humans , Inflammation , Male , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Chemokine , SARS-CoV-2 , Severity of Illness Index
6.
Virusdisease ; 32(3): 388-389, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1285946
SELECTION OF CITATIONS
SEARCH DETAIL